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Detecting Coevolution through Allelic Association
between Physically Unlinked Loci

Rori V. Rohlfs,1,* Willie J. Swanson,1 and Bruce S. Weir1,2

Coevolving interacting genes undergo complementary mutations to maintain their interaction. Distinct combinations of alleles in

coevolving genes interact differently, conferring varying degrees of fitness. If this fitness differential is adequately large, the resulting

selection for allele matching could maintain allelic association, even between physically unlinked loci. Allelic association is often

observed in a population with the use of gametic linkage disequilibrium. However, because the coevolving genes are not necessarily

in physical linkage, this is not an appropriate measure of coevolution-induced allelic association. Instead, we propose using both

composite linkage disequilibrium (CLD) and a measure of association between genotypes, which we call genotype association (GA).

Using a simple selective model, we simulated loci and calculated power for tests of CLD and GA, showing that the tests can detect

the allelic association expected under realistic selective pressure. We apply CLD and GA tests to the polymorphic, physically unlinked,

and putatively coevolving human gamete-recognition genes ZP3 and ZP3R. We observe unusual allelic association, not attributable to

population structure, between ZP3 and ZP3R. This study shows that selection for allele matching can drive allelic association between

unlinked loci in a contemporary human population, and that selection can be detected with the use of CLD and GA tests. The obser-

vation of this selection is surprising, but reasonable in the highly selected system of fertilization. If confirmed, this sort of selection

provides an exception to the paradigm of chromosomal independent assortment.
Introduction

Coevolving genes are expected to undergo compensatory

mutations to maintain their interaction. Over evolu-

tionary time, accumulation of compensatory mutations

at two loci would result in correlation of phylogenetic

distances between the loci. Methods have been developed

for detecting coevolution by testing for high correlation

of phylogenetic distance matrices between gene families,

genes, or gene domains.1–6 These methods have success-

fully identified known coevolving gene families and previ-

ously unknown candidate coevolving genes.

In addition to detecting correlated phylogenetic dis-

tances, some models of coevolution predict allelic associa-

tion within a population.7 Numerous experimental studies

have shown evidence of coevolution-induced allelic asso-

ciation in several systems. Self-incompatibility mating

systems require polymorphic self-recognition proteins on

both sperm and eggs. Genes encoding self-recognition

proteins are in physical linkage in sea squirts,8 Brassica,9

and Aspergillus nidulans,10 allowing compatible self-recog-

nition genes to be transmitted together so that outcrossing

is maintained over generations. Conversely, sea urchin

eggs preferentially bind sperm with a sperm-recognition

gene allele like their own, even though that gene is not

expressed in eggs.11 It has been proposed that physical

linkage between the polymorphic gamete-recognition

genes maintains the observed allelic association.11 In

abalone, physically unlinked gamete receptor genes were

recently found to be in linkage disequilibrium (LD).6

More generally, genome-wide studies of LD have found

that, even across chromosomes, functionally related genes
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have higher LD than do functionally unrelated genes in

Drosophila12 and between inbred mouse lines13 (however,

see 14). This increased association may facilitate efficient

interactions between polymorphic genes in an interacting

group. In humans, HLA and KIR are well established as

interacting immune-response loci under intense diversi-

fying selection. Although these genes are on different

chromosomes, their allele frequencies are significantly cor-

related within human populations, as one would expect

under intense selection for allele matching.15

In all of the examples above, selective advantage of

paired alleles resulted in allelic association, sometimes

even in the absence of physical linkage. Most cases of selec-

tive advantage for specific allele pairing would be resolved

with fixation of the optimal allele pair.7 For sustained

selection-induced allele pairing, additional forces must

maintain polymorphism. Allele-pairing selection may

occur in gamete recognition because the process is obvi-

ously essential for gene transmission, requires interaction

between sperm and egg receptor genes, and is subject to

complex selective forces culminating in sexual conflict.16

Comprehension of these selective forces requires an

explanation of the mechanics of gamete recognition. In

humans, an egg is contained in a plasma membrane that

is surrounded by a glycoprotein shell, the zona pellucida

(ZP). A sperm binds to the ZP, releases enzymes to break

through the ZP, travels through the ZP, binds to the plasma

membrane, and finally fuses with the egg to fertilize it.17 If

more than one sperm fuses with the egg, the polyspermy

zygote is inviable. To prevent this, after a sperm fuses

with the egg, the ZP is modified in the cortical reaction

to prevent more sperm from reaching the egg. To avoid
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polyspermy, a fit sperm receptor allele will bind sperm

slowly, to minimize the chance that multiple sperm bind

before the cortical reaction completes. At the same time,

the only sperm to pass on genetic information is the first

fertilizer. This sperm competition for quick egg recognition

means that a fit egg receptor binds very quickly. These

opposing interests create sexual conflict, causing succes-

sive waves of selection at each locus. When polyspermy

rates are high, slower-binding sperm receptors have a selec-

tive advantage. Then egg receptor alleles that quickly bind

to the increasingly common sperm receptors have a selec-

tive advantage, increasing polyspermy rates and starting

the cycle again.18 All the while, the interaction between

loci is maintained, resulting in rapid coevolution between

polymorphic loci.

In this paper, we explore the ramifications of coevolu-

tion between the genes mediating sperm-ZP binding in

humans. Specifically, the ZP-located protein ZP3 (MIM

182889) has been shown to mediate sperm binding to

the ZP19 and is in the top 10% of divergent (but still align-

able) genes between humans and rodents.20 Additional

studies have shown that some strongly conserved sites

form regions of exposed hydrophobic residues involved

in ZP3 polymer formation21 and that sites under the

intense positive selective pressure are in regions implicated

in species-specific gamete recognition.22 The correspond-

ing egg receptor on sperm has been less clearly identified.

However, ZP3R has been proposed to bind ZP3.23–26

Because ZP3 and ZP3R are putative interactors mediating

gamete recognition, are polymorphic among humans,

and are located on different chromosomes, they are excel-

lent candidates for coevolution-induced allelic association.

We show evidence of current genotype pairing selection

between ZP3 and ZP3R, as observed in intergenic allelic

association.

We propose allelic association as an indicator of selection

for allele pairing. The most commonly used form of allelic

association is gametic LD, which quantifies the sum of asso-

ciation between maternal alleles and association between

paternal alleles at two loci.27 Although LD is typically

thought of as a measure of recombination rate correlated

with physical distance, LD was originally devised to detect

allelic association due to epistatic selection.28,29 In this

study, we are interested in association between paternal

egg receptor (ZP3R) alleles and maternal sperm receptor

(ZP3) alleles, which is quantified in a specific nongametic

allelic association, rather than gametic LD. We consider

population-based data, in which there is no gametic phase

information, preventing direct measurement of the rele-

vant specific nongametic allelic association.

Instead of haplotypic gametic or nongametic LD, we use

genotypic association measures, which include the rele-

vant nongametic allelic association along with other allelic

associations. Specifically, we use composite linkage dis-

equilibrium (CLD)30 as a general measure of additive asso-

ciation and genotype association (GA)31 as a measure of

association in genotype pairs. CLD quantifies additive
The Ame
co-occurence of alleles in genotypes at two loci, whereas

GA measures departures from independence of genotypes

between two loci. Here, we describe these measures and

their results regarding the allelic association between ZP3

and ZP3R as compared to both the asymptotic null expec-

tation and empirical distribution.
Subjects and Methods

Data
The Wellcome Trust Case Control Consortium (WTCCC) kindly

provided us with the genotype calls using the Affymetrix 500K

SNP genotyping platform for 1504 individuals in the 1958 Birth

Cohort study.32 We used the same quality-control procedures on

the data as did the WTCCC study, leaving 1480 individuals.32

Genes of interest were represented by sets of SNPs over these

1480 individuals.

To ensure genotyping probe-binding specificity for the SNPs

examined around the candidate genes, we ran blastn searches on

each 25-mer probe, using a small word size (7) and no filtering

or masking. We found no extraneous exact probe matches, nor

any near matches between the chromosomes containing ZP3

and ZP3R; chromosomes 7 and 1, respectively.

Candidate Gene SNPs
A subset of SNPs from the Affymetrix 500K genotyping platform

act as a proxy for functionally distinct alleles of ZP3 and ZP3R. To

choose SNPs representative of alleles encoding structurally distinct

proteins, we use SNPs in a local region defined by high LD around

the gene. Although the Affymetrix 500K SNPs are relatively dense

genome-wide, they are too sparse to allow accurate assessment of

fine-scale LD structure. Therefore, gene regions were determined

by LD calculated with the use of the more densely genotyped

HapMap CEU group (Utah residents with ancestry from northern

and western Europe).33 The exact regions used were the smallest

regions extending no further than 100 kb up- and downstream of

the gene, including all SNPs in high LD with a SNP in the gene itself.

We quantify high LD as r2 > 0.8, with r2 defined30 as

r2 ¼ ð~pAB � ~pA
~pBÞ

2

~pAð1� ~pAÞ~pBð1� ~pBÞ

in which ~pA is the observed minor allele frequency (MAF) at one

locus, ~pB is the observed MAF at the other locus, and ~pAB is the

observed double minor allele haplotype frequency.

Applying this SNP selection method to ZP3 and ZP3R produces

13 and 28 SNPs, respectively, all genotyped in the 1958 Birth

Cohort. Monomorphic SNPs in the 1958 Birth Cohort are elimi-

nated, leaving ten SNPs to represent ZP3 and 26 to represent ZP3R.

There is LD within these SNP sets, preventing assumptions of

independence. To decrease dependence between SNPs, we use

tag SNPs identified through an ad hoc method. The SNP having

r2 > 0.8 with the highest number of other SNPs is chosen as

a tag SNP for all of those SNPs. If there are multiple SNPs having

r2 > 0.8 with the same number of SNPs, the tag SNP is chosen

randomly. This process is repeated until all SNPs in the locus are

tagged, resulting in seven and nine SNPs in ZP3 and ZP3R, respec-

tively. These tag SNPs do not eliminate dependency between tests,

but they do reduce both gross differences in representation of

different LD blocks and the total number of tests computed

between SNP sets.
rican Journal of Human Genetics 86, 674–685, May 14, 2010 675



Table 1. Genotype-Count Contingency Table

nBB nBb nbb

nAA nAABB nAABb nAAbb

nAa nAaBB nAaBb nAabb

naa naaBB naaBb naabb
Empirical Comparisons
We evaluate the extremity of allelic association between the candi-

date genes by using an empirical framework to account for back-

ground genomic levels of allelic association between physically

unlinked loci. We consider two different data types for empirical

comparison: SNPs and genes.

In the SNP-wise method, the association tests between SNP pairs

in our candidate genes are compared to the distribution of associ-

ation tests between all SNPs on the chromosomes of the candidate

genes; chromosomes 1 and 7. So, an empirical allelic association

p value is calculated for each SNP pair between the candidate

genes. While this method provides a simple estimation of the

significance of association between candidate gene SNPs, it does

so independently for each SNP pair, ignoring dependencies within

each candidate gene.

To account for LD within each candidate gene, we compare the

distribution of test statistics between SNPs in the candidate genes

with the distributions of test statistics from SNP pairs between

other genes on chromosomes 1 and 7. These distribution-distribu-

tion comparisons incorporate LD within genes.

For this purpose, a gene is defined as the set of overlapping tran-

scripts from the same strand, as defined in the UCSC Genome

Browser’s ‘‘known genes’’ list downloaded in September 2007

from NCBI build 36.34 There are 1662 such genes on chromosome

1 and 769 genes on chromosome 7. The SNPs included to describe

each gene were identified in a manner similar to that of those for

the candidate genes, in which the total genetic distance across the

gene approximates that of the candidate gene.
Allelic Association Tests
We are interested in whether there is allelic association between

the maternally inherited ZP3 and paternally inherited ZP3R.

Clearly, conventional gametic LD will not detect this specific asso-

ciation. Nongametic LD may be more appropriate for this applica-

tion. However, because we use population data, rather than family

data, gametic phase can not be determined, so it is not possible to

directly measure either gametic or nongametic LD. Instead, we

measure both general allelic association, using CLD, and associa-

tion between genotype pairs, in a measure that we call genotype

association (GA). Each measure quantifies the sum of several

specific associations, including the association between maternal

ZP3 and paternal ZP3R.

Note that if there is diploid expression in gametes so that both

transmitted and nontransmitted protein alleles are present, non-

inherited maternal ZP3 and paternal ZP3R may play a role in

sperm-egg recognition. The data set used here is population-based

and thus lacks noninherited allele information, so we focus on

inherited genes.
Composite Linkage Disequilibrium
General allelic association between a pair of SNPs is quantified by

CLD. An estimate of CLD has been previously given35 as

bDAB ¼
1

n
nAB � 2~pA

~p

in which

nAB ¼ 2nAABB þ nAABb þ nAaBB þ
1

2
nAaBb

The hypothesis that CLD is zero, indicating no allelic associa-

tion, can be tested with the test statistic
676 The American Journal of Human Genetics 86, 674–685, May 14,
X2
1 ¼

nbD2

AB�
~pA

~pa þ ~pAA � ~p
2

A

��
~pB

~pb þ ~pBB � ~p
2

B

�
which is approximately c2 distributed with one degree of freedom.

The CLD method tests for additive association of the A and B

alleles in a two-locus genotype.

Genotype Association
Not all selective scenarios that create genotypic association may be

detected with the CLD method. For example, if AA and –b tend to

co-occur and –a and BB tend to co-occur, the net association

measured in bDAB would be very small, despite strong genotype

associations. To address this possibility, we use a standard con-

tingency table for independence between the two genotypes

(Table 1), resulting in the chi-square distributed test statistic

with four degrees of freedom:

X2
4 ¼ n

 
ð~pAABB � ~pAA

~pBBÞ
2

~pAA
~pBB

þ ð
~pAABb � ~pAA

~pBbÞ
2

~pAA
~pBb

þ ð
~pAAbb � ~pAA

~pbbÞ
2

~pAA
~pbb

þ
�
~pAaBB � ~pAa

~pBB

�2

~pAa
~pBB

þ
�
~pAaBb � ~pAa

~pBb

�2

~pAa
~pBb

þ
�
~pAabb � ~pAa

~pbb

�2

~pAa
~pbb

þ
�
~paaBB � ~paa

~pBB

�2

~paa
~pBB

þ
�
~paaBb � ~paa

~pBb

�2

~paa
~pBb

þ
�
~paabb � ~paa

~pbb

�2

~paa
~pbb

!

Note that when there are zero instances of any one-locus geno-

type, a GA statistic would have fewer than four degrees of freedom.

Those cases have been excluded from further analysis in this

discussion.

Permutation Testing Scheme
The CLD and GA test statistics measure allelic association, but they

are also dependent on marginal one-locus genotype counts. To

control for the one-locus genotype counts, X1
2 and X4

2 are used

as test statistics in permutation tests. For each permutation, the

individual identities corresponding to multimarker genotypes for

one locus are held fixed, while the individual identities for the

other locus are shuffled. Intralocus allelic association is main-

tained, and only interlocus allelic association is randomized. The

permutation p value for a SNP pair is the proportion of permuted

data sets resulting in X1
2 or X4

2 larger than those calculated from

the original observed data. Permutation p values approximate

exact p values, which are the probabilities of an allelic association

at least as strong as that observed, given the marginal genotypes at

each locus. We use the permutation approximation of exact tests

here because the large sample size (n ¼ 1480) precludes complete

enumeration of all two-locus data sets.

Addressing Power
The chance of falsely rejecting the hypothesis of allelic indepen-

dence is set by our choice of significance level, and the probability

of correctly rejecting the hypothesis can be addressed by power

calculations. In order to study power, we need to specify an
2010



Table 2. Adaptive Values of All Gamete Pairs

Sperm

Egg AB Ab aB ab

AB 1 1 1-s 1-s

Ab 1-s 1-s 1 1

aB 1 1 1-s 1-s
alternative hypothesis, and we do so by invoking a model of

selection.

Using a simple selective model, we calculate expected genotype

counts for a range of selective coefficients, including no selection.

Both CLD and GA tests are applied to the expected genotype

counts, and test power and type I error are calculated for each

test. Below, we present a simple selective model used to generate

genotype counts and methodology both for calculating power

exactly and for estimating power asympototically.
ab 1-s 1-s 1 1
Simulating Selection
As in Lewontin’s simulations,28,29 we simulate selection on

a system with two loci, ZP3R-like A expressed in sperm and ZP3-

like B expressed in eggs, each with two alleles, A/a and B/b. Because

selection occurs when egg and sperm encounter each other and

attempt fertilization, we consider gamete pair frequencies,

meaning the joint frequency of egg ZP3 and sperm ZP3R alleles.

At the start of the simulation, gamete pair frequencies are

uniformly distributed such that each gamete pair has frequency

of 1/16 in individuals. Gamete pair encounter frequencies are

calculated under random mating with equal numbers of male

and female individuals, as the product of individual gamete

frequencies in the current generation. Not all gamete pair encoun-

ters lead to successful fertilization, and some gamete pair alleles

may recognize each other better than others. To simulate this

differential fertilization success, gamete pair encounter frequen-

cies are multiplied by their respective adaptive values to obtain

gamete pair frequencies in the next generation.

In this model, we assume haploid expression, meaning that

only the transmitted allele is expressed in a gamete. So, gamete

pairs with the alleles sperm A, egg B and sperm a, egg b are equally

fit, with adaptive values of 1.0, whereas pairs sperm A, egg b and

sperm a, egg B are equally less fit, with adaptive values of 1.0-s,

in which s is the selective coefficient. The adaptive values of all

gamete pairs are listed in Table 2.

To clarify the simulation process, we demonstrate the calcula-

tions over a generation. Say in the current generation the single

contributing gamete frequencies and gamete pair frequencies in

individuals are

. . . .

. . . .

. . . .

. . . .

_____________________________sperm sperm sperm sperm
AB Ab aB ab

egg
AB AB AB AB Ab AB aB AB ab
egg
Ab Ab AB Ab Ab Ab aB Ab ab
egg
aB aB AB aB Ab aB aB aB ab
egg
ab ab AB ab Ab ab aB ab ab

p p p p
p p p p p
p p p p p
p p p p p
p p p p p

These current-generation gamete pair frequencies can be

summed appropriately, producing the single-gamete frequencies

contributing to the next generation. For example, the frequency

of eggs or sperm with gametic haplotype AB will be

p0egg
AB ¼ pAB:AB þ

1

2

�
pAB:Ab þ pAB:aB þ pAb:AB þ paB:AB

�
þ 1

4

�
pAB:ab þ pAb:aB þ paB:Ab þ pab:AB

�
:

The gamete pair encounter frequencies for the next genera-

tion are the product of the individual-gamete frequencies. For

example, the probability of an AB egg encountering an AB sperm

is p0AB
eggp0AB

sperm. At this point, selection for gamete receptor

matching is applied. In the case of the AB egg and AB sperm, the

egg B and sperm A match, so the adaptive value used is 1.0

and the next-generation gamete pair frequency in individuals is
The Ame
p0AB.AB ¼ 1.0(p0AB
eggp0AB

sperm). For an AB egg and an aB sperm, the

egg B and sperm a do not match, so their adaptive value is 1.0 � s

and p0AB.aB ¼ (1.0 – s)(p0AB
eggp0aB

sperm). All of the next next-genera-

tion genotype frequencies are normalized so that they sum to 1.0.

In this study, 50 generations were simulated, at which point the

gamete pair frequencies were stable. Because of the symmetry in

selection on each allele, the allele frequencies remain at 0.5.
Calculating Power
The power of a Fisher’s exact test for gametic LD can be computed

for particular disequilibrium parameters.36 Similarly, the power of

a Fisher’s exact test for either CLD or GA can be computed with the

use of the genotype-frequency matrix F expected under some

selective coefficient s:

F ¼

24 pAABB pAABb pAAbb

pAaBB pAaBb pAabb

paaBB paaBb paabb

35
Because the row and column sums of F are constrained to the

one-locus frequencies, the matrix can be specified by the four

entries pAABB, pAABb, pAaBB, and pAaBb. Note that the matrix is

described in the four parameters

k ¼ pAABBpaabb

pAAbbpaaBB

l ¼ pAABbpaabb

pAAbbpaaBb

m ¼ pAaBBpaabb

pAabbpaaBB

n ¼ pAaBbpaabb

pAabbpaaBb

Given these genotype frequencies, the probability of the geno-

type-count matrix

C ¼

24nAABB nAABb nAAbb

nAaBB nAaBb nAabb

naaBB naaBb naabb

35
with marginal genotype-count arrays M ¼ [nAA, nAa, naa], [nBB, nBb,

nbb] follows the multinomial probability-density function and can

be computed as

PðC jM,FÞ ¼ n!Q
i

Ci

Q
i

FCi

i

¼ n!

nAABB!nAaBB!.naabb!
knAABB lnAABb mnAaBB nnAaBb ,

1

T

in which i indexes all Ci and Fi, which are two-locus genotype

counts and frequencies in C and F, respectively, that are con-

strained by the one-locus marginals. The same constraint hold

for normalizing factor T:
rican Journal of Human Genetics 86, 674–685, May 14, 2010 677



Table 3. CLD-Based Permutation p Values between Tag SNPs in ZP3R and ZP3

ZP3

ZP3R rs2868371 rs6978009 rs10156094 rs1860148 rs868269 rs1019096 rs2298691

rs3813948 0.62 0.13 0.38 0.41 0.49 0.57 0.30

rs8942 0.06 0.02 0.15 0.70 0.01 0.76 0.14

rs2491395 0.00 0.01 0.06 0.99 0.24 0.23 0.04

rs4844573 0.03 0.09 0.47 0.59 0.28 0.58 0.18

rs11120277 0.43 0.46 0.02 0.38 0.32 0.03 0.57

rs10746451 0.03 0.29 0.55 0.08 0.50 0.53 0.15

rs7543834 0.85 0.25 0.03 0.33 0.33 0.24 0.29

rs7516640 0.09 0.19 0.67 0.19 0.49 1.00 0.28

rs11120512 0.34 0.88 0.50 0.14 0.82 0.87 0.18

p values below 0.05 are indicated in bold font.
T ¼
P

i

PðCi jM,FÞ

¼
P

nAABB ,nAABb ,nAaBB ,nAaBb

n!

nAABB!.naabb!
knAABB lnAABb mnAaBB nnAaBb :

For the power computation, the marginal one-locus genotype

counts M are held fixed while all joint two-locus genotype-count

matrices C are enumerated and P(CjM, F) are calculated. The GA

Fisher’s exact test p value of each individual joint genotype-count

matrix C with P(CjM, F) ¼ q is the sum of P(CjM, F) for all C where

P(CjM, F) % q. With p computed for every matrix C, the exact

power of the GA exact test is the sum of P(CjM, F) for all possible

C with p % a. The exact type I error rate is computed the same way,

in which s ¼ 0.

For the CLD test, the exact p value of each individual joint geno-

type-count matrix C with P(CjM, F)¼ q and X1
2¼ x is then the sum

of P(CjM, F) for all C where X1
2 R x. The exact power of the CLD

test is the sum of P(CjM, F) for all joint genotype-count matrices

where p % a and the type I error rate is the same sum computed

when s ¼ 0.

Estimating Power Asymptotically
Calculating the power of these exact tests can be prohibitively

slow with a large sample size. As an alternative, we quickly esti-

mate power by using theoretical test statistic distributions under

the alternative hypothesis. Under the alternative hypothesis

with genotype frequency matrix F, X1
2 is approximately chi-square

distributed with one degree of freedom and noncentrality param-

eter

l1 ¼
D2

AB�
pApa þ pAA � p2

A

�
ðpBpb þ pBB � p2

BÞ

whereas X4
2 is chi-square distributed with four degrees of freedom

and noncentrality parameter

l4¼n

 
ðpAABB � pAA� pBBÞ2

pAA � pBB

þ ðpAABb � pAA� pBbÞ2

pAA � pBb

þ ðpAAbb � pAA� pbbÞ2

pAA � pbb

þ
�
pAaBB � pAa � pBB

�2

pAa � pBB

þ
�
pAaBb � pAa � pBb

�2

pAa � pBb

þ
�
pAabb � pAa � pbb

�2

pAa � pbb

þ
�
paaBB � paa � pBB

�2

paa � pBB

þ
�
paaBb � paa � pBb

�2

paa � pBb

þ
�
paabb � paa � pbb

�2

paa � pbb

!
:
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The power of each test is the area right of the critical value

under the corresponding noncentral chi-square distribution with

parameters obtained via simulated one- and two-locus genotype

frequencies. This assumes that the test statistics follow their

expected asymptotic distributions. In fact, because genetic data

are discrete, the resulting test statistics are discrete and their distri-

bution only approximates the asymptotic expectation.36 Power

computed asymptotically is not the true exact power for our

analysis with 1480 individuals; however, it provides an adequate

approximation.

Results

SNP Pair Analysis

Both X1
2 and X4

2 were used as association measures in

1000-iteration permutation tests between each tag SNP

pair in ZP3 and ZP3R. Because we are considering seven

SNPs representing ZP3 and nine SNPs representing ZP3R,

a full test yields a matrix of 63 test statistics. Table 3 and

Table 4 show these permutation p value tables using X1
2

and X4
2, respectively. In Table 4, some results are excluded

because the GA test is defined only when both SNPs tested

have at least one observed instance of each genotype.

Of the 63 and 42 permutation p values based on X1
2 and

X4
2, ten (15.9%) and five (11.9%) are significant, respec-

tively, with a ¼ 0.05. If the allelic association tests were

independent and followed the asymptotic distribution

assuming no allelic association, we would expect 5% of

tests to be significant, so the observed p values are enriched

for significance. The use of tag SNPs decreases dependence

between tests; however, there is still LD within each gene.

Because of this dependence, these significance proportions

can not be directly compared to the expectation under

independence, but they do suggest a high rate of allelic

association. Dependence within each locus is further

addressed in the Gene Pair Analysis section.

SNPs with low MAFs are more likely to have genotyping

errors, and these errors have greater effects on allelic asso-

ciation calculations for low-MAF SNPs. To check that the
2010



Table 4. GA-Based Permutation p Values between Tag SNPs in ZP3R and ZP3

ZP3

ZP3R rs2868371 rs6978009 rs10156094 rs1860148 rs1019096 rs2298691

rs3813948 0.92 0.36 0.91 0.41 0.14 0.73

rs8942 0.21 0.20 0.52 1.00 0.72 0.67

rs2491395 0.02 0.03 0.39 0.72 0.34 0.25

rs4844573 0.05 0.09 0.50 0.50 0.26 0.43

rs10746451 0.19 0.08 0.43 0.29 0.34 0.22

rs7516640 0.29 0.29 0.03 0.45 0.02 0.53

rs11120512 0.81 0.92 0.79 0.24 0.52 0.49

p values below 0.05 are indicated in bold font.
associations observed between ZP3 and ZP3R can not be

explained by low-MAF genotyping errors, SNPs with MAF

below 0.05 were excluded from the LD-blocked SNP sets.

Of the remaining tests, 14.3% and 11.9% of SNP pairs

were found to be significantly associated via permutation

tests based on X1
2 and X4

2, respectively. The similar per-

centage in significance without low-MAF SNPs confirms

that the observed associations are not due to low-MAF

SNP-genotyping error.

We ran a similar analysis on a secondary candidate gene

pair implicated in maternal-fetal interactions: GHR (MIM

600946) and GH2 (MIM 139240).37 The fetus releases

GH2 into the mother, where it is detected by GHR, in

order to alter its environment to its benefit, which is not

necessarily in the mother’s interest.37 For example, it is

in the fetus’s interest to maximize nutrient uptake from

the mother’s blood, whereas it is in the mother’s interest

to keep enough nutrients to remain healthy. This conflict

may cause similar selective patterns as in fertilization.

With the use of permutation p values based on X1
2

and X4
2, 17.3% and 6.8%, respectively, of tag SNP pairs

are significantly associated (Tables S3 and S4, available

online). With exclusion of SNPs with MAF below 0.05,

the results were similar, with 18.2% and 6.8% of tag SNP

pairs shown by X1
2 and X4

2, respectively, to be signifi-

cantly associated. Histograms of GHR-GH2 test statistics

are compared to the asymptotic expectations and empir-

ical distributions in Figure S1.

Conditioning on the marginal one-locus SNP genotypes

in each gene, we’ve shown that SNPs in ZP3 and ZP3R are

more associated than expected under independence. We

are also interested in whether ZP3 and ZP3R have high

allelic association in comparison to background genomic

association levels. To test empirical allelic association,

permutation p values were computed for all SNP pairs

between chromosomes 1 and 7. Figure 1 shows the full

distribution of the ZP3-ZP3R allelic association test statis-

tics in comparison with the empirical SNP pair results

and asymptotically expected null test statistic distribu-

tions. The ZP3-ZP3R test statistics are shifted right of the

asymptotic null chi-square distributions and of the empir-
The Ame
ical test statistics. The quantile-quantile (Q-Q) plots in

Figure 2 provide a visual comparison of ZP3-ZP3R p values

and the same number of p values from random SNP pairs

between chromosomes 1 and 7. CLD is higher in the candi-

date genes than in the random SNP pairs, but GA appears

to be more similarly distributed between the candidates

and random SNP pairs.

Gene Pair Analysis

To control for LD within each locus, we compare the

observed test statistics between SNPs in ZP3 and ZP3R

with test statistics between SNPs in random gene pairs

between chromosomes 1 and 7. As an example, we

examine the association comparison between ZP3-ZP3R

and a single random gene pair: DPY19L1 on chromosome

7 and PIP5K1A on chromosome 1. The random gene pair

choice was constrained to genes with numbers of typed

SNPs similar to those in the candidate genes. DPY19L1

has 26 SNPs, whereas PIP5K1A has ten.

Permutation tests based on both X1
2 and X4

2 were

performed between every SNP pair in ZP3-ZP3R and in

DPY19L1-PIP5K1A. The results are compared in Q-Q plots

in Figure 3, which shows more significant p values in the

candidate gene pair as compared to the random gene

pair. In this random example, 15.9% of X1
2-based p values

and 11.9% of X4
2-based p values between ZP3 and ZP3R

are significant, whereas zero p values based on either X1
2

or X4
2 between DPY19L1 and PIP5K1A are significant,

with a ¼ 0.05.

The ZP3-ZP3R and DPY19L1-PIP5K1A test statistic distri-

bution comparison is a useful example, but is only a single

comparison. To better understand the genomic empirical

extremity of our candidate gene pair test statistics, we

compare the candidate gene pair test distributions to

many random gene pair test distributions. Because these

gene pair comparisons are meant to control for intragenic

LD, all SNPs are included, rather than tag SNPs only. We

visually compare the permutation p value distribution of

the candidate gene pair with many random gene pairs

simultaneously, by plotting the cumulative distribution

functions (CDFs) of – log(p) for candidate and random
rican Journal of Human Genetics 86, 674–685, May 14, 2010 679
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B Figure 1. CLD and GA Test Statistic
Distributions
The black curve shows the asymptotically
expected null test statistic distribution,
the gray bars are histograms of the empir-
ical distribution of the test statistics
between all SNP pairs on chromosomes 1
and 7, and the red bars are a histogram of
test statistics between SNPs in ZP3 and
ZP3R for (A) X1

2 and (B) X4
2.
gene pairs on the same plot (Figure 4). When one CDF is

below and to the right of another CDF, the first distribution

has greater values than the second.

In Figures 4A and 4B, the ZP3-ZP3R – log(p) CDF in red is

to the right of most random gene pair CDFs and the average

random gene pair curve, showing that the – log(p) distribu-

tion in candidate gene pairs is shifted right of both indi-

vidual random gene pairs and random gene pairs on

average. Although only 20 individual random gene pair

CDFs are shown in each plot in Figure 4, the average

CDF curves are calculated with the use of all 769 random

gene pairs between chromosomes 1 and 7. Figures 4C and

4D show the same random gene pair CDFs with the

DPY19L1-PIP5K1A distribution highlighted in red, illus-

trating that DPY19L1-PIP5K1A p values are distributed

much like other random gene pairs. It may be that the

unusual association in ZP3-ZP3R is due to some unknown

feature of either ZP3 or ZP3R, independent of their

relationship to each other. To check that possibility, the

ZP3-ZP3R p value distribution is compared to ZP3R paired

with chromosome 7 genes and to ZP3 paired with chromo-

some 1 genes. Figures 4E and 4F compare the ZP3-ZP3R to
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ZP3R-chromosome 7 genes, and Fig-

ures 4G and 4H compare ZP3-ZP3R

to ZP3-chromosome 1 genes. In each

case, the ZP3-ZP3R p value distribu-

tions are shifted more significantly in

comparison to the candidate versus

random gene p value distributions.
A one-sided Kolmogorov-Smirnov (KS) test can be used

to quantitatively test the hypothesis that the candidate

gene pair p value distribution is significantly lower than

the distribution resulting from a random gene pair. We per-

formed such KS tests to compare p value distributions

between ZP3-ZP3R and the 769 random gene pairs. Just

as shown in Figure 4, we performed three analogous sets

of KS tests for comparison: between fixed DPY19L1-

PIP5K1A and the 769 random gene pairs, between fixed

ZP3-ZP3R and ZP3R paired with 769 chromosome 7 genes,

and between fixed ZP3-ZP3R and ZP3 paired with 1662

chromosome 1 genes. Table 5 shows the proportions of

each set of KS tests in which the fixed p value distribution

is significantly (a¼ .05) lower than the comparison p value

distribution. For both CLD- and GA-based permutation

tests, the proportion of tests rejected in the null DPY19L1-

PIP5K1A comparison is significantly lower than in the

ZP3-ZP3R comparisons.

We again used one-sided KS tests to test the hypothesis

that the p value distributions for each random gene pair

are lower than those of the candidate genes. With the

use of CLD- and GA-based p values, 8.2% and 7.6% of
Figure 2. Q-Q Plot Comparing ZP3-ZP3R
with Random SNP Pairs
The Q-Q plots compare the (A) X1

2-based
and (B) X4

2-based permutation p values
between ZP3-ZP3R and an equal number
of random SNP pairs between chromo-
somes 1 and 7.
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2-based
and (B) X4

2-based permutation p values
between ZP3-ZP3R and PIP5K1A-DPY19L1.
The dotted lines indicate significance
thresholds with a ¼ 0.05.
random gene pair p value distributions were significantly

lower than the ZP3-ZP3R distributions, respectively.

The KS test results support the hypothesis that the candi-

date gene p value distributions are lower than random

gene pair p value distributions, indicating unusual allelic

association between ZP3 and ZP3R. The comparisons of

ZP3-ZP3R with each ZP3 and ZP3R paired with other genes

show that the unusual association in ZP3-ZP3R is not due

to some feature of either gene on its own but, rather, is

specific to ZP3 and ZP3R.

Power Analysis

Because of the surprising nature of the observed allelic

association and proposed causal coevolution, it is impor-

tant to confirm the biological plausibility of selection

causing allelic association and of that allelic association

being detected by the tests that we applied. We use our

selection model to numerically calculate the effect of

allele-matching selection on gamete pair frequencies over

generations. The resulting expected gamete pair frequen-

cies under selection are used as parameters in power

calculations. The selective model used in this analysis is

a vast simplification of the complex dynamics involved

in fertilization protein evolution; however, it provides a

rough approximation that we can use to assess the plausi-

bility of detecting coevolution via allelic association in

biological data.

Power curves for the exact and asymptotic tests are

shown under various s and n in Figure 5. For a high but

biologically reasonable s of 0.1,38 with a sample size of

n ¼ 1480, the asymptotic CLD test has a power of 0.525

and the asymptotic GA test has a power of 0.327. The

causal coevolving polymorphisms are likely to be in LD

with the SNPs examined, adding another step of associa-

tion and potentially decreasing power in the applied

tests. At the same time, the tests actually used in this anal-

ysis are permutation tests, which approximate the more

powerful exact test, rather than the less powerful chi-

square tests used in the power calculation. Although these
The American Journal of Human
power estimates are approximate,

they indicate that it is feasible that

these tests could detect allelic associa-

tion caused by biologically plausible

levels of selection.

Using the same exact test methods

with s ¼ 0, we calculated the type I

error rates for n ¼ 50, 200 as 4.0%

and 3.9%, respectively. Because of
computational limitations, we were unable to perform

the exact test for larger value of n; however in the cases

computed, the false-positive rate is below the expected

nominal level of 5.0%.
Family-Based Power Estimation

Our analysis applies a population-based approach. How-

ever, a family-based design could provide additional

information, including parental nontransmitted alleles

and transmitted alleles. Power in several family-based

approaches was estimated with the use of the simulation

framework described above, in which individuals are

simulated and random gametes encounter one another.

The selective coefficient s is applied to random gamete

encounter zygote formation, so that some, but not all,

random gamete encounters result in a trio. This trio set is

used to estimate power via several different family-based

methods.

Particularly fertile couples may have better-matched ZP3

and ZP3R alleles than particularly infertile couples. It is

possible that expression is diploid during gametogenesis,

so that proteins expressed from nontransmitted ZP3 and

ZP3R alleles are present in gametes. In that case, the asso-

ciation of interest is between the maternal ZP3 and

paternal ZP3R genotypes, which could be evaluated with

CLD and GA tests.

In the case of haploid expression in gametes, one would

expect transmission disequilibrium of better-matching

allele pairs. To test this possibility, the observed and

possible transmitted gamete allele pairs are totaled over

all trios and tested for association via a standard chi-square

test.

The trio set was used for calculation of CLD and GA

between maternal ZP3 and paternal ZP3R and the trans-

mission test. The simulation was repeated 10, 000 times

with a selective coefficient of s ¼ 0.1 and a sample size of

900 trios, resulting in power estimates of 16.8%, 12.3%,

and 9.7%, respectively.
Genetics 86, 674–685, May 14, 2010 681
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Figure 4. Comparative Gene Pair CDFs
These plots show the cumulative distribution functions (CDFs) of permutation – log(p) computed between the gene pair of interest in red,
20 comparison gene pairs in gray, and the average CDF of all comparison gene pairs in black. In the top row, – log(p) between ZP3R and
ZP3 (red) is compared to – log(p) between random gene pairs on chromosomes 1 and 7 (gray) and the average comparative gene pair –
log(p) distribution (black) for (A) X1

2-based and (B) X4
2-based permutation p values. In the second row, – log(p) between PIP5K1A and

DPY19L1 (red) is compared to – log(p) between random gene pairs on chromosomes 1 and 7 (gray) and the average comparative gene
pair – log(p) distribution (black) for (C) X1

2-based and (D) X4
2-based permutation p values. In the third row, – log(p) in ZP3R-ZP3 (red)

are compared to – log(p) between ZP3R and 20 genes on chromosome 7 (gray) and the average – log(p) distribution between ZP3R
and chromosome 7 genes (black) for (E) X1

2-based and (F) X4
2-based permutation p values. In the bottom row, – log(p) in ZP3R-ZP3

(red) is compared to – log(p) between ZP3 and 20 genes on chromosome 1 (gray) and the average – log(p) distribution between ZP3R
and chromosome 7 genes (black) for (G) X1

2-based and (H) X4
2-based permutation p values.
Discussion

Our results support unusual allelic association between

ZP3 and ZP3R, as quantified by both CLD and GA tests.

Alleles of ZP3 and ZP3R are nonrandomly associated, as

shown via permutation methods, and their association is

empirically unusual, as shown in genomic comparisons.

We explore the plausibility of mechanisms apart from

coevolution causing allelic association in ZP3-ZP3R.

In previous genome-wide studies, allelic association

between physically unlinked loci has been explained by

mismapped SNPs39 (R. Lawrence et al., 2007, Genet. Epide-
682 The American Journal of Human Genetics 86, 674–685, May 14,
miol., abstract). In this study, the genotyping probes for

each SNP examined in ZP3 and ZP3R were checked for

sequence similarity with other regions in the genome.

No sequence similarity between the probes and the regions

around ZP3 and ZP3R was found, so the observed allelic

association was not caused by SNP mismapping.

Population structure could also cause allelic association

between physically unlinked loci. Allelic association would

be observed if the alleles at each locus have different

frequencies in different populations and those populations

are pooled together. In this analysis, ZP3 and ZP3R are

associated as compared to other genes in the same
2010



Table 5. Significant KS Test Rates

X1
2-Based X4

2-Based

ZP3R-ZP3 versus chr1-chr7 gene pairs 0.760 0.740

PIP5K1A-DPY19L1 versus chr1-chr7 gene pairs 0.295 0.476

ZP3R-ZP3 versus ZP3R-chr7 genes 0.818 0.811

ZP3R-ZP3 versus ZP3-chr1 genes 0.803 0.738

The proportions of significant KS tests with a ¼ 0:05 are shown for X2
1-based

permutation and X2
4-based permutation tests (row 1) comparing the ZP3-ZP3R

results to chromosome 1–7 random gene pairs, (row 2) comparing DPY19L1-
PIP5K1A to chromosome 1–7 random gene pairs, (row 3) comparing ZP3-
ZP3R to ZP3R paired with chromosome 7 genes, and (row 4) comparing
ZP3-ZP3R to ZP3 paired with chromosome 1 genes. All KS tests are against
the alternative hypothesis that the fixed gene pair p values are more significant
than the varying gene pair p values.
individuals. It is not likely that population structure would

cause allelic association in our candidate gene pair but not

in other gene pairs in the same population.

It is possible that ZP3 and ZP3R are statistical outliers that

we expect under no selection and are associated simply by

chance.However, givenour limitedsingle-hypothesis candi-

date gene approach, we find that unlikely. Having ruled out

other causes for allelic association, we propose that the

observed association is a result of selection for allele pairing.

Previously, it had not been clear what degree of selective

pressure would be necessary for detectable allelic associa-

tion. Our power analysis shows that allelic association

can be maintained with a realistic level of selective pressure

for allele matching. Given our sample size, test power is

not high enough to reliably detect selection-induced allelic

associations, but power is high enough so that a significant

association cannot be immediately dismissed as an artifact.

The field has yet to identify a gene pair that is certainly

coevolving in which both genes are polymorphic. In the

absence of a clear positive control, we performed prelimi-

nary tests on GHR and GH2, a secondary candidate gene

pair that may mediate fetal-maternal interactions. This

candidate gene pair showed some association, similar to
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ZP3-ZP3R. A collection of unusually associated candidate

gene pairs supports the hypothesis that coevolution results

in slight, if not blatant, association.

To further support the hypothesis that ZP3-ZP3R associ-

ation is biological in nature, we would like to perform an

amino-acid-level analysis of the structural allelic differ-

ences driving selection. Unfortunately, the data used here

are too sparse for such a fine-scale analysis. Finer-scale vari-

ation or sequence data is necessary to understand the

local LD structure and identify causal variants. In lieu of

sequence data at ZP3 and ZP3R, we do note that of the

five nonsynonymous SNPs in ZP3, four fall in or near

a sperm-binding region, as one would expect for function-

ally distinct sperm-binding alleles.21,34 Because ZP3R

was more recently identified as a gene, it has been less

thoroughly sequenced, and no nonsynonymous SNPs are

known in ZP3R as of yet.34

A different study design using family data would enable

different analyses considering full parental genotypes and

transmission. To investigate the feasiblity of family-based

studies, we performed power estimations, showing insuffi-

cient power with currently available data sets. As larger

densely genotyped family data sets are available, it will

be interesting to apply family-based methods to investi-

gate selection for allelic association.

Despite the coarse, limited data analyzed, the observed

results indicate that coevolution causes allelic association

between physically unlinked gamete receptor genes. The

fact that there could be allelic association between physi-

cally unlinked loci is quite surprising. The Mendelian

model indicates that for each generation, genes on sepa-

rate chromosomes are inherited independently, and thus

the allele pairs would be randomized every generation.

Strong selective force is required to maintain association

between alleles randomized during each generation. Fertil-

ization is a likely point for this powerful selection, given

that unsuccessful fertilization negates further gene trans-

fer. Additionally, it may be adventageous for egg and

sperm receptors to increase or decrease allele frequencies
0.6 0.8 1.0

s

Figure 5. Power Curves
Assuming the selective model described in
the text, the exact power of the exact test
and the asymptotically derived power of
the asymptotic tests were computed for
both (A) X1

2 and (B) X4
2 for 50 values of s

ranging from 0 to 1. The dashed curves
show exact power, and the solid curves
show asymptotically estimated power.
Violet, red, blue, black, and green curves
are calculated with the use of n ¼ 50,
200, 1000, 1480, and 3000, respectively.
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independently, which is only possible in the absence

of physical linkage. By contrast, in self-infertility systems,

in which both coinheritance and correlation of allele

frequencies are favored, recognition genes are often found

in physical linkage.8–10

We speculate that there are a few other biological points

where allele-pairing selection plays such a powerful role.

For example, in host-pathogen invasion, only pathogens

that can successfully recognize their specific host can

invade and reproduce, so allelic association may exist

between host and pathogen receptor genes. It is also

possible that allelic association is maintained at low levels

between interacting genes or gene groups as a result of

weak allele-matching selection.

The implications of rapidly coevolving gamete-recogni-

tion genes in structured populations deserve some explora-

tion. Theoretical and empirical work has shown that

gamete-recognition genes in isolated populations could

diverge to the point of speciation.6,7 In humans, popula-

tion differentiation is relatively recent and migration rates

are high enough so that the vast majority of variation is

shared across populations.40 However, given that there is

some isolation, gamete receptor allele frequencies are likely

to vary across subpopulations, so the frequency-dependent

selection on any given allele will vary in different subpop-

ulations. If an individual from an external subpopulation

joins a given subpopulation, his or her genotype may be

selected for or against, depending on the allelic context

of the given subpopulation.

Chromosome transmission is widely assumed to be

random. If there are cases in which selection is strong

enough to create nonrandom chromosome transmission,

the current model of large-scale genome structure needs

to be revisited. For example, in GWAS, a signal for associa-

tion at a SNP is assumed to be due to some nearby variant.

Nonrandom chromosome transmission implies that such

an association peak may not be due to a physically linked

variant but rather to an unlinked, but associated variant.

Further exploration of the extent of interchromosomal

allelic association is necessary to determine the relevance

of this possibility in functional genetic studies.
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